ANALÍTICA TEXTUAL

ANALÍTICA TEXTUAL

INTRODUCCIÓN A LA CIENCIA Y APLICACIÓN DEL ANÁLISIS DE INFORMACIÓN NO ESTRUCTURA

ATKINSON ABUTRIDY, JOHN

24,80 €
IVA incluido
No disponible
Editorial:
MARCOMBO
Año de edición:
2023
ISBN:
978-84-267-3613-0
Páginas:
256
Encuadernación:
Rústica
24,80 €
IVA incluido
No disponible

1 ANALÍTICA TEXTUAL ......................................................................................... 25
1.1 INTRODUCCIÓN .................................................................................... 25
1.2 MINERÍA DE TEXTOS Y ANALÍTICA TEXTUAL ......................................... 28
1.3 TAREAS Y APLICACIONES ...................................................................... 30
1.4 EL PROCESO DE LA ANALÍTICA TEXTUAL ............................................... 33
1.5 RESUMEN .............................................................................................. 36
1.6 PREGUNTAS .......................................................................................... 37
2 PROCESAMIENTO DEL LENGUAJE NATURAL .................................................... 39
2.1 INTRODUCCIÓN .................................................................................... 39
2.2 PROCESAMIENTO DEL LENGUAJE NATURAL ......................................... 41
2.3 NIVELES Y TAREAS EN NLP .................................................................... 42
2.3.1 Fonología .............................................................................................. 43
2.3.2 Morfología ............................................................................................ 44
2.3.3 Léxico .................................................................................................... 45
2.3.4 Sintaxis .................................................................................................. 51
2.3.5 Semántica ............................................................................................. 55
2.3.6 Razonamiento y pragmática ................................................................. 60
2.4 RESUMEN .............................................................................................. 60
2.5 EJERCICIOS ............................................................................................ 62
2.5.1 Análisis morfológico ............................................................................. 62
2.5.2 Análisis léxico ........................................................................................ 66
2.5.3 Análisis sintáctico ................................................................................. 68
3 EXTRACCIÓN DE INFORMACIÓN ....................................................................... 71
3.1 INTRODUCCIÓN .................................................................................... 71
3.2 EXTRACCIÓN DE INFORMACIÓN BASADA EN REGLAS .......................... 75
3.3 EXTRACCIÓN DE ENTIDADES NOMBRADAS .......................................... 76
3.3.1 Modelos de N-gramas .......................................................................... 78
3.4 EXTRACCIÓN DE RELACIONES ............................................................... 81
3.5 EVALUACIÓN ......................................................................................... 86
3.6 RESUMEN .............................................................................................. 88
3.7 EJERCICIOS ............................................................................................ 90
3.7.1 Extracción vía expresiones regulares ................................................... 90
3.7.2 Reconocimiento de entidades nombradas (NER) ................................. 94
4 REPRESENTACIÓN DE DOCUMENTOS .............................................................. 97
4.1 INTRODUCCIÓN .................................................................................... 97
4.2 INDEXACIÓN DE DOCUMENTOS ........................................................... 99
4.3 MODELOS DE ESPACIO VECTORIAL .................................................... 101
4.3.1 Modelo de representación booleana ................................................. 102
4.3.2 Modelo de frecuencia de términos .................................................... 103
4.3.3 Modelo de frecuencia inversa de documentos .................................. 104
4.4 RESUMEN ........................................................................................... 106
4.5 EJERCICIOS .......................................................................................... 107
4.5.1 Modelo de representación TFxIDF ..................................................... 107
5 ANÁLISIS DE REGLAS DE ASOCIACIÓN ............................................................ 115
5.1 INTRODUCCIÓN .................................................................................. 115
5.2 PATRONES DE ASOCIACIÓN ................................................................ 116
5.3 EVALUACIÓN ...................................................................................... 118
5.3.1 Support ............................................................................................... 118
5.3.2 Confidence ......................................................................................... 119
5.3.3 Lift ....................................................................................................... 119
5.4 GENERACIÓN DE REGLAS DE ASOCIACIÓN ......................................... 120
5.5 RESUMEN ........................................................................................... 124
5.6 EJERCICIOS .......................................................................................... 126
5.6.1 Extracción de reglas de asociación ..................................................... 126
6 ANÁLISIS SEMÁNTICO BASADO EN CORPUS .................................................. 131
6.1 INTRODUCCIÓN .................................................................................. 131
6.2 ANÁLISIS BASADO EN CORPUS ........................................................... 133
6.3 ANÁLISIS SEMÁNTICO LATENTE ......................................................... 135
6.3.1 Generación de vectores con LSA ........................................................ 136
6.4 WORD2VEC ......................................................................................... 140
6.4.1 Aprendizaje de embeddings en CBOW ............................................... 143
6.4.2 Predicción e interpretación de embeddings ...................................... 146
6.5 RESUMEN ........................................................................................... 148
6.6 EJERCICIOS .......................................................................................... 149
6.6.1 Análisis semántico latente (LSA) ......................................................... 149
6.6.2 Modelo de Word embedding del tipo Word2Vec .............................. 156
7 AGRUPACIÓN DE DOCUMENTOS ................................................................... 161
7.1 INTRODUCCIÓN .................................................................................. 161
7.2 CLUSTERING DE DOCUMENTOS .......................................................... 163
7.3 CLUSTERING K-MEANS ........................................................................ 169
7.4 MAPAS AUTOORGANIZATIVOS ........................................................... 172
7.4.1 Aprendizaje de mapas topológicos ..................................................... 174
7.5 RESUMEN ............................................................................................ 178
7.6 EJERCICIOS .......................................................................................... 179
7.6.1 Clustering via K-means ....................................................................... 179
7.6.2 Clustering vía mapas autoorganizativos ............................................. 185
8 MODELAMIENTO DE TÓPICOS ........................................................................ 188
8.1 INTRODUCCIÓN .................................................................................. 189
8.2 MODELAMIENTO DE TÓPICOS ............................................................ 191
8.3 LATENT DIRICHLET ALLOCATION ........................................................ 193
8.4 EVALUACIÓN ....................................................................................... 200
8.5 RESUMEN ............................................................................................ 202
8.6 EJERCICIOS .......................................................................................... 203
8.6.1 Modelamiento de tópicos con LDA .................................................... 203
9 CATEGORIZACIÓN DE DOCUMENTOS ............................................................. 209
9.1 INTRODUCCIÓN .................................................................................. 209
9.2 MODELOS DE CATEGORIZACIÓN ........................................................ 211
9.3 CLASIFICACIÓN BAYESIANA ................................................................ 214
9.4 CATEGORIZACIÓN POR MÁXIMA ENTROPÍA ...................................... 218
9.5 EVALUACIÓN ....................................................................................... 223
9.6 RESUMEN ............................................................................................ 225
9.7 EJERCICIOS .......................................................................................... 227
9.7.1 Categorización con Naïve Bayes ......................................................... 227
9.7.2 Categorización con Máxima Entropía ................................................. 232
10 CONCLUSIONES ................................................................................................. 239
Bibliografía ............................................................................................................. 244
Glosario .................................................................................................................. 250
Índice onomástico .................................................................................................. 253

Si desea obtener o entender sus propios datos textuales para descubrir y detectar automáticamente conocimiento valioso para su empresa, ha llegado al libro indicado. En él se proporciona una introducción a la ciencia y a las aplicaciones de la analítica textual o minería de textos (text mining) que le permitirá examinar fuentes de información no estructurada textual electrónica. La ciencia de la minería de textos es capaz de identificar información relevante y descubrir patrones ocultos desde grandes conjuntos de datos de naturaleza textual. Estos descubrimientos pueden convertirse en una forma estructurada que analizar e integrar en otro tipo de sistemas tradicionales de apoyo en la toma de decisiones (por ejemplo, en la inteligencia de negocios, en las bases de datos relacionales y en el data warehouses). Las aplicaciones de la minería de textos o analítica textual son prácticamente transversales en los ámbitos industriales, comerciales, científicos y públicos, por lo que este libro se convertirá en una herramienta clave para la toma de decisiones. Analítica textual se compone de 10 capítulos que combinan aspectos básicos teóricos de diferentes modelos y métodos computacionales, con ejercicios prácticos paso a paso a través del lenguaje de programación Python. Asimismo, esta obra revisa: ' Los fundamentos de la analítica textual: el procesamiento del lenguaje natural y la representación de documentos. ' Las diferentes tareas que se pueden realizar: la extracción de información, el descubrimiento de asociaciones, el análisis semántico, el clustering de documentos, el análisis de tópicos y la categorización de textos. Gracias a esta lectura, entenderá los paradigmas y los métodos computacionales para desarrollar aplicaciones que analicen automáticamente la información textual o los documentos, y descubrirá patrones novedosos sobre cómo mejorar los procesos en su organización.

Artículos relacionados

  • PASATIEMPOS
    Cuando llevas todo el año trabajando sin parar deseas que lleguen las vacaciones para desconectar, pero también para relajarte. Qué bien se está tomando el sol en la playa, callejeando por pueblecitos de ensueño o tumbado en una hamaca leyendo, mien ...
    En stock

    12,00 €

  • REVISTA DE OCCIDENTE 529: ENERGÍA Y DESORDEN GLOBAL
    SUMARIO DE REVISTA DE OCCIDENTE Nº 529 • Energía, seguridad y Fuerzas Armadas, Ignacio Fuente Cobo • Europa ante sus rivales energéticos, Gonzalo Escribano • La energía en el nuevo desorden geopolítico, Marta Sánchez Álvarez • Política energética y competitividad de la industria en la descarbonización, Óscar Arnedillo Blanco y Jorge Sanz Oliva • España ante el dilema nuclear: ...
    En stock

    9,00 €

  • INTRODUCCIÓN AL PENSAMIENTO COMPLEJO
    MORIN, EDGAR
    Edgar Morin expone en este libro los principios esenciales de la complejidad como contrapartida de la simplificación: la necesidad de integrar lo diverso, asumir la incertidumbre y comprender la relación entre el todo y las partes que lo componen. La patología moderna está en la hipersimplificación que ciega la complejidad de lo real. Pero ¿cómo encarar la complejidad del conoc...
    En stock

    17,80 €

  • YO, BÁRBARA
    REY, BÁRBARA
    LAS ESPERADAS MEMORIAS DE BÁRBARA REY: «POR PRIMERA VEZ, TODA MI VERDAD». «Creéis que sois una corte. Yo conozco cortes. Y circos. Y son lo mismo. Creéis que el domador es la estrella. Y la estrella es el león» (Bárbara Rey). En un mundo donde las apariencias y los secretos se entrelazan, Bárbara Rey cuenta por primera vez la verdad sin filtros: una historia de pasión, espionaj...
    En stock

    23,90 €

  • LA TRANSICIÓN Y LA DERIVA DEL PRESENTE
    SALVADOR PÉREZ BUENO
    ¿Qué fue de la promesa democrática nacida en la Transición? ¿Cómo hemos llegado hasta aquí? En La transición y la deriva del presente, Salvador Pérez Bueno repasa desde la experiencia vivida, la memoria política y el análisis riguroso, las luces y sombras del proceso democrático español, con especial atención al papel de Andalucía. Entre el ensayo y las memorias, el autor plant...
    En stock

    21,95 €

  • REINO DE CENIZAS
    MAAS, SARAH J.
    Tras años en los que el éxito literario de Sarah J. Maas ha ido creciendo de forma imparable por todo el mundo, al fin llega el épico e inolvidable final de la saga superventas número 1 Trono de cristal.Aelin lo ha arriesgado todo para salvar a su gente, pero el coste ha sido tremendo. Encerrada dentro de un ataúd de hierro por la reina de las hadas, Aelin deberá usar su inqueb...
    En stock

    28,95 €